

G = (6, -2)

Q. 2 (A) Complete and write any TWO activities from the following :

1) Solution : l(WT) = 4.8, $l(TX) = \overline{8, l(YT)} = 6.4$

Using property of intersecting secants,

- $\therefore \text{ WT x TX} = \text{YT x TZ}$
- $\therefore 4.8 \times 8 = 6.4 \times TZ$

$$\therefore TZ = \frac{4.8 \times 8}{6.4}$$

 $\therefore l(TZ) = 6$ units

2) Solution : LHS =
$$\tan^4 \theta + \tan^2 \theta$$

= $(\tan^2 \theta)^2 + \tan^2$ $[(a^2)^2] = a^4$
= $(\sec^2 \theta - 1)^2 + \sec^2 \theta - 1$ $(1 + \tan^2 \theta = \sec^2 \theta)$
= $\sec^4 \theta - 2\sec^2 \theta + 1 + \sec^2 \theta - 1$
= $\sec^4 \theta - \sec^2 \theta$

3) **Solution :** Capacity of the bucket = Volume of frustum

$$= \frac{1}{3}\pi h (r_1^2 + r_2^2 + r_1 \times r^2)$$

= $\frac{1}{3} \times \frac{22}{7} \times 28 (15^2 + 12^2 + 15 \times 12)$
= $\frac{22 \times 4}{3} \times (225 + 144 + 180)$
= $\frac{22 \times 4}{3} \times 549$
= 88×183
= $16104 \text{ cm}^3 = 16.104 \text{ litre}$

B) Solve.any FOUR sub-questions from the following :

1) Ans : In \triangle LMN, ray MT bisects \angle LMN. By the property of angle bisector,

$$\therefore \frac{ML}{MN} = \frac{LT}{TN}$$
$$\therefore \frac{6}{10} = \frac{LT}{8}$$
$$\therefore LT = \frac{6 \times 8}{10} = \frac{48}{10}$$
$$\therefore LT = 4.8$$

2) Ans : In \triangle RST, \angle S = 90°, \angle T = 30°, \angle R = 60° ...(Remaining angle) 4

$$RS = \frac{1}{2} \times RT \quad \text{side opposite to } 30^{\circ}$$

$$\therefore RS = \frac{1}{2} \times 12 \quad \therefore RS = 6 \text{ cm} \quad TS = \frac{\sqrt{3}}{2} \times RT \quad s$$

$$\therefore RS = 6 \text{ cm} \quad \therefore RS = 6\sqrt{3} \text{ cm}$$

$$3) \text{ Ans : Suppose C } (x_1, y_1) \text{ and point D } (x_2, y_2) \quad x_1 = -3a, y_1 = a \text{ and } x_2 = a, y_2 = -2a \quad Using distance formula, \quad \therefore RS = 6\sqrt{3} \text{ cm}$$

$$3) \text{ Ans : Suppose C } (x_1, y_1) \text{ and point D } (x_2, y_2) \quad x_1 = -3a, y_1 = a \text{ and } x_2 = a, y_2 = -2a \quad Using distance formula, \quad \therefore d(CD) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad \therefore d(CD) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad \therefore d(CD) = \sqrt{(4a)^2 + (-3a)^2} \quad \therefore d(CD) = \sqrt{25a^2} \quad \therefore d(CD) = 5a$$

4) Ans : In given figure,
Seg AD _ tangent AC $\therefore \angle DAC = 90^{\circ}$ $\Big)$ Tangent theorem Seg AB _ tangent BC $\therefore \angle DBC = 90^{\circ}$ $\Big)$ Tangent theorem Now in $\Box ABCD$,
The sum of measure of all angles of quadrilateral is 360°
 $\therefore \angle DAC + \angle DBC + \angle ACB + \angle ADB = 360^{\circ}$
 $\therefore 230^{\circ} + \angle ADB = 360^{\circ} \text{ NEET CET FOUNDATION Institute}$
 $\therefore \angle ADB = 360^{\circ} - 230^{\circ}$
 $\therefore \angle ADB = 130^{\circ}$
5) Ans : LHS = $\cos^2 \theta (1 + \tan^2 \theta) = (\cdots (\because 1 + \tan^2 \theta = \sec^2 \theta))$
 $= \cos^2 \theta \times \frac{1}{\cos^2 \theta} \qquad \dots (\because \cos \theta = \frac{1}{\cos \theta})$
 $= 1$
 $= RHS$

Q. 3 (A) Complete and write *any* **<u>ONE</u> activity from the following :** 1) **Solution :** $In \triangle ABC$, line $DE \parallel$ side BC ... [Given]

$\therefore \frac{\text{AD}}{\text{DB}} = \frac{\text{AE}}{\text{EC}}$	[Basic proportionality theorem]
$\frac{DB}{AD} = \frac{EC}{AE}$	[By Invertendo]
$\therefore \frac{\text{DB} + \text{AD}}{\text{AD}} = \frac{\text{EC} + \text{AE}}{\text{AE}}$	[By Componendo]

3

side opposite to 60°

$$\therefore \frac{\mathbf{AB}}{\mathbf{AD}} = \frac{\mathbf{AC}}{\mathbf{AE}} \qquad \dots \text{ [A-D-B and A-E-C]}$$
$$\therefore \frac{\mathbf{AD}}{\mathbf{AB}} = \frac{\mathbf{AE}}{\mathbf{AC}} \qquad \dots \text{ [By invertendo]}$$

2) Solution : Let A (3, 8) \equiv (x_1 , y_1) and B (-9, 3) \equiv (x_2 , y_2) are the given points. We have to find a point on *y*-axis.

> : Its *x*-co-ordinate will be $\mathbf{0}$ Let the points A and B divide in ration m : nBy section formula for internal division.

$$x = \frac{mx_2 + nx_1}{m + n}$$

$$\therefore \quad \mathbf{0} = \frac{m(-9) + n(3)}{m + n}$$

$$\therefore \quad -9\mathbf{m} + 3\mathbf{n} = 0$$

$$\therefore \quad 9\mathbf{m} = 3\mathbf{n}$$

$$\therefore \quad \frac{\mathbf{m}}{\mathbf{n}} = \frac{1}{3}$$

B) Solve *any* <u>TWO</u> sub-questions from the following :

1) Prove : In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides.

Given: In $\triangle ABC$, $\angle ABC = 90^{\circ}$

To Prove : $AC^2 = AB^2 + BC^2$ NEET | CET | FOUNDATION Institu

Construction : Draw seg BD \perp hypotenuse AC and A-D-C.

Proof : In \triangle ABC, seg BD \perp hypotenuse AC(construction)

- $\therefore \Delta ABC \sim \Delta ADB$ (similarity in right angled triangle)
- $\therefore \quad \frac{AB}{AD} = \frac{AC}{AB} \qquad \qquad \dots \text{(corresponding sides of similar triangles)}$
- $\therefore AB^2 = AC \subset AD \qquad \dots (1)$

Similarly, we have $\triangle ABC \sim \triangle BDC$

 $\therefore \quad \frac{BC}{DC} = \frac{AC}{BC} \qquad \dots \text{(corresponding sides of similar triangles)}$

$$\therefore BC^{2} = AC \subset DC \qquad \dots(2)$$

By adding (1) and (2)
$$\therefore AB^{2} + BC^{2} = AC \times AD + AC \times DC$$
$$= AC (AD + DC)$$
$$= AC \times AC \qquad \dots(A-D-C)$$
$$= AC^{2}$$

6

D

В

 $\therefore AB^2 + BC^2 = Ac^2$

- 2) Ans : Chord AB \cong Chord CD(Given) Arcs subtended by congruent chords are congruent
 - \therefore (arc ACB) \cong m(arc DBC)
 - \therefore m(arc AC) + m(arc CB) = m(arc BD) + m(arc CB)
 - \therefore m(arc AC) = m(arc BD)
 - \therefore arc AC \cong arc BD

Hence proved.

4) **Ans** :

Given : Radius of tablet $(r_1) = 7mm = 0.7$ cm Thickness of tablet $(h_1) = 5 \text{ mm} = 0.5 \text{ cm}$

Radius of wrapper (r_2) = $\frac{14 \text{ mm}}{2}$ =7 mm = 0.7 cm

Height of wrapper $(h_2) = 10$ cm

- Volume of tablet = $\pi r_1^2 h_1$ \therefore Volume of tablet = $\pi \times (0.7)^2 \times 0.5$
- \therefore Volume of tablet = $\pi \times 0.7 \times 0.7 \times 0.5 \text{ cm}^3$
- \therefore Volume of wrapper = $\pi r_2^2 h_2$
- \therefore Volume of wrapper = $\pi \times (0.7)^2 \times 10$
- \therefore Volume of wrapper = $\pi \times 0.7 \times 0.7 \times 10 \text{ cm}^3$

Volume of wrapper Total number of tablets = -Volume of tablet

$$= \frac{\mathcal{R} \times 0.7 \times 0.7 \times 10}{\mathcal{R} \times 0.7 \times 0.7 \times 0.7 \times 0.5}$$
$$= \frac{10}{0.5} = \frac{100}{5}$$

= 20Number of tablets wrapped in the wrapper is 20.

Q. 4 Attempt any TWO sub-questions from the following :

By basic proportionality theorem,

$$\therefore \quad \frac{DP}{PB} = \frac{AP}{PC}$$

... (III)

From equation (I) and (III)

 $\frac{PC}{PB} = \frac{AP}{DP}$ $\therefore \quad \frac{PC}{PB} = \frac{AP}{DP}$

Hence proved

3) Ans : Area of sector $x = \frac{\theta}{360^{\circ}} \times \pi r^{2}$: Area of sector $x = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (14)^2$ (:: PQ = 14):. Area of sector $x = \frac{1}{4} \times \frac{22}{7} \times 196$ \therefore Area of sector $x = \frac{616}{4}$ \therefore Area of sector $x = 154 \text{ cm}^2$ Area of sector $y = \frac{\theta}{360^{\circ}} \times \pi r^2$ $\therefore \text{ Area of sector } y = \frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times (7)^2$ (:: AR = OR - OA):. Area of sector $y = \frac{1}{4} \times 22 \times 7$ **ION Institute** : Area of sector $y = 38.5 \text{ cm}^2$ Area of rectangle = $l \times b$ \therefore Area of rectangle = PQ x QR \therefore Area of rectangle = 14 x 21 \therefore Area of rectangle = 294 cm² Now, Area of sector z = Area of rectangle - (Area of sector x + area of sector y) = 294 - (154 + 38.5)= 294 - 192.5 \therefore Area of sector $z = 101.5 \text{ cm}^2$ Q. 5 Attempt *any* <u>ONE</u> sub-question from the following : 1) seg PA \cong seg PC ... (Tangent secant theorem)

1) seg PA \cong seg PC (Tangent secant theorem) $\therefore \angle PCA = \angle PAC$...(I) $\therefore \angle APC = 50^{\circ}$ $\therefore \angle PCA + \angle PAC = 180^{\circ} - \angle APC$ $= 180^{\circ} - 50^{\circ}$ $= 130^{\circ}$ $\therefore 2\angle PCA = 130^{\circ}$... from (I) $\therefore \angle PCA = 65^{\circ}$... (II) But $\angle PCA = \angle ABC$... (angles inscribed in same arc) 3

 $\therefore \angle ABC = 65^{\circ}$... from (II)

2) **Ans :** In figure AB is building. The persons standing on one side of the building are at C and D respectively. B-C-D Height of building (h) = 72 m The angle of elevation made by C is 60° and the angle of elevation made by B is 30°

 \therefore The distance between the two persons is 83.04 m

